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Abstract—Robotics software needs to be self-adaptive. Self-
adaptation in robotics can, among others, take the form of
changing a robot’s task plan or its software architecture at
runtime. The latter has shown to be effective in satisfying
quality requirements such as minimizing energy consumption
and operating safely. However, most self-adaptive robotic systems
perform architecture-based self-adaptation to meet the functional
goal of completing an assigned mission. Additionally, the mech-
anisms to accomplish architectural adaptations are mostly ad-
hoc and not oriented towards reuse. We in turn investigate
how quality requirements and architecture-based self-adaptation
can be facilitated in robotics software while integrating into
existing practices to promote practitioners’ adoption and reuse.
To this end, we design and implement an extension to the
Behavior Trees (BTs) task plan formalism which introduces an
explicit consideration of quality requirements. Additionally, we
implement a general architectural adaptation layer for ROS2
systems and an extension to BTs which showcases its utilization.
Finally, we perform quantitative experiments to evaluate the
effectiveness of our approach in satisfying quality requirements
via architectural adaptation on a mobile terrestrial robot. We
find our approach to be an effective means to address a variety
of self-adaptation scenarios within the mission of the system.

Index Terms—robotics, self-adaptation, behavior trees, quality

I. INTRODUCTION

The world is seeing a consistent increase in the use of
robotics across industries [1]. This entails an increase in
demand for the capabilities of said robotic systems and their
software. At the same time, robotics applications need to cope
with the runtime uncertainty they face during their missions.
This need comes both from the increasingly dynamic environ-
ments in which robots operate (e.g., different terrains/lighting
conditions/obstacles), from potentially unreliable software and
hardware, and from the dynamic missions they undertake
(e.g., mission goals which change at runtime). A promising
solution is to incorporate the ability to dynamically change
their operation at runtime i.e., self-adaptation [2], [3].

There is an established pattern for the use of self-adaptation
in robotics when it comes to changing the task plan of a
robot [4]–[7]. Particularly, plans are made reactive to enable
autonomous behavior. For example, if the camera component
in a robotics system fails at runtime, it adjusts its plan to
navigate based on a saved map of the environment rather than
the real-time visual feed. Crucially, these adaptations tend to

be made for the sake of completing the overall ‘mission’ of
the robot.

In contrast, research into self-adaptive systems outside of
robotics has seen a focus on adaptation for meeting quality
requirements (QRs) [8], [9]. For example, through the use of
self-adaptation to ensure the availability of a website by scal-
ing the number of servers providing it. Additionally, meeting
QRs is often done by modifying the software architecture of
the system (e.g., by adding, removing, binding, re-configuring
components). Since the seminal work by Garlan et al. [10]
architecture-based self-adaptation has become a well-known
approach in which architectural models are used as the basis
for both the reasoning about and execution of self-adaptation.
Among other advantages, this allows engineers to develop
self-adaptation solutions that abstract away from particular
applications or missions and can be potentially reused [9].

In our quest to apply architecture-based self-adaptation to
robotics, we phrase two main research questions RQ1: How
can we integrate the consideration of quality requirements
into existing practices of robotics software? and RQ2: How
can we integrate architecture-based self-adaptation into
existing practices of robotics software? By integrating into
existing practices we emphasize our aim of relying on existing
tools and libraries (e.g., Behavior Trees and ROS2) as opposed
to requiring extensive re-modeling or re-implementation.

In this paper we propose a multi-faceted approach, Re-
BeT1(Re-configuration with Behavior Trees), for build-
ing reusable architecture-based self-adaptation solutions in
robotics software. We introduce a set of abstractions to allow
(1) specifying QRs and monitoring their satisfaction to allow
motivating either task plan or architectural adaptations (2)
adapting the architecture of a ROS2 system irrespective of
the planning paradigm used (3) integrating the adaptation of
a system’s software architecture within the task plan specifi-
cation. While (1) addresses RQ1, (2) and (3) address RQ2.

We implement the above by relying on ROS2 [11] and
extending Behavior Trees (BTs) [12], a formalism for planning
the actions of an agent. BTs are an established task planning
approach in robotics and are similar to hierarchical state ma-
chines [13]. One of the benefits of BTs is that their hierarchical
structure allows us to capture the fact that multiple tasks

1Code available at: https://github.com/EGAlberts/ReBeT
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may be subject to the same QR. Additionally, their popularity
makes our approach accessible to robotics practitioners. Our
approach is evaluated on FROG, a terrestrial mobile robot
tasked with a realistic mission of locating and detecting a
particular object. We apply ReBeT to FROG, implementing
specific adaptations to meet its QRs. We also quantitatively
evaluate the increase in overall utility brought by our self-
adaptation solutions compared to a non-adaptive baseline.

The target audience of this work is robotics software de-
velopers and researchers. With ReBeT we aspire to support
developers and researchers of robotics software in considering
quality of service explicitly, and ensuring it at runtime through
self-adaptation. We also aim to standardize architecture-based
adaptations and make them accessible.

II. BACKGROUND AND RELATED WORK

A. Background

1) ROS2: Robot Operating System 2 (ROS2) is a set
of open-source libraries and tools that has become the de
facto standard for building robotic applications [11]. From
an architectural perspective, an application built with ROS2
consists of a number of software components – nodes –
deployed to in part command a given robot. To communicate,
nodes can act as publishers and subscribers to topics, clients
and servers to services, or clients and servers to actions – the
latter being intended to be used only by long-running tasks.
Important for our work is that ROS2 includes ‘managed’ nodes
called lifecycle nodes. These can be made to transition between
a set of pre-defined states in their ‘lifecycle’ in accordance
with the progress of their execution (Create, Activate, Destroy,
etc.). For more details, we invite the reader to look at the
official ROS2 documentation2.

2) Behavior Trees: Behavior trees (BTs) are a popular
formalism for specifying action plans in robotics [12], [13].
BTs are an alternative to hierarchical state machines where
the main building block is an action instead of a state. A
BT is graphically represented by a directed tree of nodes
where outgoing nodes are parents and incoming nodes are
children. Leaf nodes are action or condition nodes, i.e., nodes
that either execute tasks or evaluate expressions, while non-
leaf nodes are either control nodes (can have many children)
or decorator nodes (can have a single child only). A control
node can be either a sequence, parallel or a fallback node.
A sequence node prescribes the sequential execution of its
children and a parallel their parallel execution, whereas a
fallback selects only one of its children to be executed at
any point in time, dependent on the results of the children.
Finally, a decorator node may transform the result received
from its child, terminate it, or repeat its processing, to mention
a few common uses. The execution of a tree starts from
the root node that sends an execution signal – tick – to its
child. Ticks are propagated through the tree according to the
control nodes. When an action node is ticked its execution
begins – if not already running. Every node sends to its

2https://docs.ros.org/en/humble/
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Fig. 1: Analysis and Examples of Runtime Adaptations in
Robotics

parent one of the following three state indicators: running
(operation ongoing), success (goal reached), or failure (goal
not reached). This combination of downward propagation of
ticks and upward propagation of states allows for specifying
and executing complex yet compactly represented plans.

In our implementation, we extend BehaviorTree.CPP
(BT.CPP)3, a C++ BT library. Specifically, BT.CPP imple-
ments BT nodes as port-based objects. The ports of objects
can be constrained to that specific object or specified as a
reference to a value stored in a Blackboard conforming to
the blackboard design pattern. BT.CPP uses XML to declare
BTs. Each node is an XML element; the element’s attributes
are the nodes’s input and output ports. To represent hierarchy,
nodes below each other in the tree are enclosed by their parent
element. A ROS2 library acts as a bridge between BT.CPP and
ROS24, wherein BT nodes play the role of ‘clients’ for ROS2
nodes. In particular, a BT action node can enclose a service
client, action client, or publisher/subscriber to a ROS2 topic.

3) Self-adaptation in Robotics: Self-adaptation applied in
robotics is not novel in its own right. Approaches stemming
from both research and practice exist to make a robotics
system robust to runtime uncertainty via runtime change.
Based on our prior analysis of the state of the art in the
field [3], we categorize runtime adaptations that typically occur
in robotic systems according to two criteria: (i) the reason
for runtime adaptation i.e., why an adaptation takes place,
and (ii) the nature of such adaptation i.e., what is being
adapted at runtime (Fig. 1). For the former, we distinguish
between function-driven and quality-driven adaptations. A
function-driven adaptation is triggered in order to fulfil the
goal of completing the assigned mission (reach a destination,
complete a task). A quality-driven adaptation happens in order
to keep satisfying a QR of the robotics system, e.g., minimize
energy consumption or navigate with maximum velocity while
remaining safe. As to the nature of adaptations, we distinguish
between task-based and architecture-based adaptations. In
task-based adaptations, the task plan is modified at runtime,
e.g., in case of navigation, this might entail replanning to
find an alternative route to a destination. In architecture-based
adaptation, the architecture of the robotics system is being

3https://www.behaviortree.dev/
4https://github.com/BehaviorTree/BehaviorTree.ROS2/tree/humble
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modified at runtime, e.g., via adding or removing a component
to the system, creating or dissolving connections between
components, or re-configuring a component at runtime.

The combination of options for each criterion in our anal-
ysis form the four quadrants depicted in Fig. 1. A run-
time adaptation in robotics typically falls into one of the
quadrants. At the same time, an approach such as ours can
support adaptations that span across quadrants. In particular,
we rely on BTs, which already support F-Task adaptations
primarily via incorporating fallback nodes in the design of
the task plan. By explicitly modeling QRs in task plans, we
support Q-Task adaptations. We also provide an interface to
perform architectural adaptations. By using this interface in
both function-driven and quality-driven adaptations we also
effectively support F-Arch and Q-Arch, respectively.

B. Related Work

1) Relevance of BTs and architectural adaptations: The
adoption of Behavior Trees by robotics practitioners is increas-
ing, as confirmed by Ghzouli et al. [13]. They study five DSLs
in the context of ROS-based software – two state-machine and
three BT ones. The study aims at understanding how DSLs
are engineered and used by practitioners in open-source ROS
projects. Ghzouli et al. find that existing implementations of
BTs are tightly coupled with the surrounding software system
and their structure should be simple for enhancing understand-
ability and reuse. Our extension of Behavior Trees keeps this
simplicity, as the BTs of ReBeT involve only two new kinds
of nodes. The work by Ghzouli et al. evidences that BTs are
in widespread use and of interest for research, motivating our
own choice for this particular planning formalism.

Peldszus et al. [14] perform a systematic literature review on
software reconfiguration in robotics and the frameworks they
utilize to enable this. This is relevant in that it represents the
actuation of runtime adaptations. On the basis of their review
(98 papers, 48 software artifacts) they determine among others
the prevalence of certain types of adaptations. They find that,
exceedingly, work in robotics focuses primarily on reparame-
terization of components and not other kinds of architectural
adaptation. Through our own work, we hope to facilitate the
increased usage of more types of adaptations, such adding or
removing nodes and changing their connections.

2) Self-adaptation with BTs: Romero-Garcés et al. [15]
provide a sophisticated model-based approach which employs
quality attributes in robotics system through behavior trees
for the purpose of self-adaptation. Their approach relies on
a combination of neural networks and probabilistic models
to transform perceived information from a variety of sources
(the robot sensors, online data) to gauge the satisfaction of
QRs, and then use this information for self-adaptation. The
goal of their work is very close to our RQ1 i.e., facilitating
Q-Task adaptations. We still find the following key differences
to our work. First, our work focuses much more heavily on
architectural adaptation. In their work, they consider architec-
tural adaptation only via parameter change, while our work
also includes and demonstrates the removal and addition of

components as well as the change in connections between
components. Second, their work does not rely on standards
within existing practices as they do not use ROS but a collec-
tion of disparate tooling with little detail as to their specific
usage. Third, their work has a pervasive reliance on model-
driven engineering, which entails the specification and mod-
eling of the system, the adaptation scenario, and the context
through which quality attributes are estimated. As mentioned
in the introduction, while having merit, such requirements
raise the barrier of entry for the adoption of their approach.
With ReBeT, all necessary specification is contained within the
confines of the BT. Finally, they accomplish their adaptations
through modification of the structure of existing BTs, while
our additions as their name suggest merely decorate existing
BTs, leaving existing mission task plan specifications intact
and not disrupting the evolution of BTs over time.

The approach of Segura-Muros et al. [6] sees the com-
bination of AI planning languages and BTs to allow for
runtime task plan adaptation. As in our approach, the BTs
they use are integrated to work with ROS-based systems.
The authors provide an architectural blueprint made of three
macro-components: a Planner, a Blackboard, and an Executor.
The Planner has a pre-fixed set of tasks and creates a plan
out of them, while the Executor takes a plan and creates a set
of actions to execute the plan represented by a BT. Crucially,
they focus on F-Task adaptations i.e., replanning tasks, without
consideration of modifying software architecture. Additionally,
there is no explicit consideration of QRs.

The work by Behery et al. sees BTs combined with mixed
initiative planning to make them self-adaptive. To do so, simi-
lar to our own work, the authors introduce a new type of node
which determines the sequence of execution of predefined
subtrees at runtime. This is applied to a scenario where a robot
arm is used for manufacturing and has to do so while working
alongside a human safely yet quickly. This is another example
of F-Task adaptation, as the self-adaptation that takes place is
confined entirely to the BT itself. This is in contrast to our
approach which allows for both task-based and architecture-
based runtime adaptations. Additionally, while their approach
does tackle quality concerns, these are not made explicit.
Rather, these are encoded into models representing tasks.

3) Self-adaptation with other formalisms: In addition to
BTs, there are approaches which consider other formalisms to
realize self-adaptation in robotics. The approach of Jamshidi
et al. [16] and its follow-up by Cámara et al. [17] use planning
as model checking using PRISM. Through their approaches
the two sets of authors realize Q-Arch within a ROS-based
system as we do. Particularly in the work by Cámara et al.
there is a focus on the co-adaptation of tasks and software
architecture. They first adapt the architecture (Q-Arch) and
then generate valid task plans for it (F-Task). In contrast, while
our own work also supports Q-Arch and F-Task, there is no
set sequence or hierarchy between the two. Additionally, as
we introduce QRs independently of architectural adaptation,
our approach also allows for Q-Task and F-Arch. Lastly, our
approach has a lower adoption barrier as it does not rely on



design-time models (in this case the input to PRISM).
Lastly, our previous work SUAVE [18], also uses ROS2

and employs self-adaptation to re-configure the software ar-
chitecture of the robot through mode switching of compo-
nents for fault handling, and reparameterization of a search
component. The approach is applied to an underwater robot,
which needs to locate an oil pipeline despite the uncertainty
caused by components failing and poor visibility in the water.
A fundamental difference is that SUAVE’s adaptation logic
is based on ontology-based reasoning, and that there is no
explicit task planning formalism used. This work builds on the
self-adaptation mechanisms of SUAVE through the addition
of explicit task plans (BTs) and more types of architectural
adaptation.

III. APPROACH - REBET

Our proposed approach aims to support building self-
adaptation solutions in robotics software which integrate easily
into existing practices. We have named our approach ReBeT
which stands for Re-configuration with Behavior Trees. It
consists of three contributions:

1) Quality Requirement Decorators (QRDecorators) –
an extension to BTs allowing for quality-driven self-
adaptation.

2) Architecture Adaptation Layer (AAL) – a ROS2 package
for architecture-based self-adaptation.

3) Adaptation Decorators (AdaptDecorators) – an ex-
tension to BTs allowing for architecture-based self-
adaptation through AAL.

QRDecorators make it so that QRs are treated as a first-
class citizen when specifying a robotic task plan. Similar to
goal-oriented approaches to self-adaptation [19], QRs provide
a way to reason about why certain runtime adaptations should
take place or be chosen over alternatives. The current degree of
satisfaction of a QR can then be used to motivate adaptation
decisions at runtime. We detail QRDecorators further in
Section III-B.
AAL consolidates the built-in architectural adaptation capa-

bilities of ROS2, allowing any ROS2-based system to easily
have its software architecture manipulated at runtime. AAL
is used alongside BTs in this paper but is fully functional
independent of the task plan formalism used. We detail it
further in Section III-C1.

To utilize AAL, we introduce AdaptDecorators which
allows for baking architectural adaptations into the specifica-
tion of a BT’s task plan. AdaptDecorators can be provided
an initial specification, which characterizes the architectural
adaptations it performs – or have their specification provided
at runtime through BT logic. We further detail AdaptDec-
orators in Section III-C2.

A. Overview

To provide an overview of our approach, we describe its
operation as it fits the architecture model of a self-adaptive
system. Here, we use a combination of the three-layer model
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Fig. 2: Architecture Model of ReBeT

by Kramer and Magee [20] in combination with the MAPE-
K model [21] which is situated in the Change Management
layer of the three-layer model as described by Weyns [9]. We
illustrate how ReBeT fits within these two models in Fig. 2.

To aid our explanation we use a running example, FROG,
which is also used in Section IV. FROG is a mobile terrestrial
robot, specifically a Turtlebot3 Waffle, equipped with a camera
and LIDAR sensor. FROG has been assigned the mission to
map an unknown room with four obstacles in it, one of these
obstacles being the target object that it has to detect and
determine the location of.

The three-layer architecture model consists from the bottom
up of a Component Control, Change Management and Goal
Management layer.

The bottom layer, the Component Control Layer controls
the system being made self-adaptive, i.e., the managed system.
With ReBeT this can be any system running ROS2. For the
purposes of this paper, the lowest level, the robot’s hardware,
is simulated. Component Control has two interactions with
the Change Management Layer above it. Firstly, the Compo-
nent Layer provides the facility for the manipulation of the
managed system. In our case, it manipulates the managed
system’s software architecture. We extend the facilities pro-
vided by ROS2 for architectural change with AAL. Secondly,
Component Control forwards information regarding the status
of the robot to the Change Management layer. To connect that
information with the knowledge of the BT used for Change
and Goal Management we provide a SystemReflection
ROS2 component. For example, in FROG SystemReflec-
tion subscribes to the output of its odometry and LIDAR
sensors, and places these in the blackboard of the BT.

Within the Change Management layer, the entirety of
MAPE-K (i.e., the managing system) loop takes place. This
layer makes use of AAL to adapt the software architecture
of the robot. AAL is usable with information analyzed by
way of the QRDecorators (Q-Arch), or as specified by the
task plan of the BT (F-Arch). As an example of Q-Arch, as
FROG performs its mapping task, the size of the room is



uncertain. Simultaneously, there is a QR in effect for FROG to
keep its battery above a certain percentage. A self-adaptation
plan can ensure this QR is satisfied at runtime, by enacting
adaptations such as changing the robot’s behavior to visit a
charging dock or lowering its velocity to use less power while
driving. As an example of F-Arch, consider the case of FROG
transitioning from its mapping task to its detection task, FROG
removes the ROS2 nodes it uses for mapping and adds those it
requires for detecting objects from its camera feed. Irrespective
of what the adaptations are driven by, both are realized by
AdaptDecorators, the simple difference being that quality-
driven AdaptDecorators contain plans conditional on the
satisfaction of QRs, and function-driven by their placement
within the task plan logic of the BT.

We now briefly describe how ReBeT follows the MAPE-K
loop within the Change Management layer.

• Monitoring is performed by SystemReflection
which monitors the status of the robot and how it
perceives its environment stemming from Component
Control.

• Analysis is performed by QRDecorators. Upon ticking
the node(s) below it, each QRDecorator first retrieves
the data necessary for determining its satisfaction and
then places its output in the Blackboard through its
metric and status ports. For example, when a QRDec-
orator that requires power consumption below 400W
retrieves a consumption of 300W, it outputs a metric value
of 0.25 (3/4 of the way to 0W) and status ‘Power OK’.

• Planning happens in the AdaptDecorators. Adapt-
Decorators read information from the Blackboard
placed there by QRDecorators. This information is
provided as arguments to either (i) an internal adapta-
tion plan or (ii) a utility function used for an external
adaptation strategy. When using (i), the user provides
adaptation logic directly in the implementation of an
AdaptDecorator (e.g., Listing 1). When using (ii),
adaptation requests provide values of the utility function
to a separate module encompassing the adaptation logic –
we use a library of reinforcement learning algorithms [22]
as such a module for our evaluation.

• Execution is performed by AAL. AAL simplifies the
architectural adaptation of ROS2 nodes as it centralizes
their manipulation. Without it, each AdaptDecorator
would require the prior definition of a unique ROS2 client
to every node it may wish to adapt at runtime. Instead,
AAL provides two ROS2 services, one for executing the
adaptations of internal adaptation plans and another for
external adaptation strategies.

• Knowledge is stored in the Blackboard within the BT.
The information shared between each of the four phases
is stored in the Blackboard through output ports of
nodes in the BT, or by the SystemReflection ROS2
node. Information is read from the BT through input ports
of BT nodes.

The Goal Management layer is responsible for changing the

MAPE loop that is active in the Change Management layer.
It is important to realize that a task plan encoded in a BT
typically has several paths ending in distinct tasks (action
nodes). The execution of the task plan entails progressing
through several paths, potentially in nonlinear fashion. Each
path potentially sees the realization of a MAPE-K loop which
uses the QRDecorators and the AdaptDecorators for
analysis and planning, respectively. As the BT is traversed
during execution its logic controls both which MAPE loop is
currently active (concern of the Goal Management) and the
execution of the MAPE loop itself (concern of the Change
Management) – that is why it cuts across the two layers in
Fig. 2.

B. Quality-driven Self-adaptation with Behavior Trees

To address RQ1 which concerns the integration of QRs into
existing practices, we propose QRDecorators. They are pure
extensions of BTs, with no inherent dependency on ROS2. The
role of each QRDecorator is to continually determine the
degree of satisfaction of a QR of the task it decorates. For
example, the QR ‘The robot should not consume more than
150 Watts per second’ could have a metric which calculates
the ratio between current power consumption in Watts and
150 Watts. Optionally it can also output a description of the
‘status’ of the QR, such as ‘in violation’ or ‘partially fulfilled’
to provide a semantic description. To follow the previous
example, if power consumption were to exceed 150 Watts the
status could indicate ‘in violation’.

We provide two subclasses of QRDecorators, the
TaskLevelQR for localized QRs and the SystemLevelQR
for system-wide QRs. A TaskLevelQR is intended to repre-
sent requirements pertinent to a specific task a robot performs.
For instance, it could represent the QR ‘Proximity to objects
must exceed 0.5m during movement’. A SystemLevelQR is
intended for representing requirements pertinent to the whole
system. For instance, it could represent our earlier example
QR of not consuming more than 150 Watts per second for
the entire robot. To establish a semantic and programmatic
relationship between task-level and system-level QRs, each
QRDecorator indicates which quality attribute (QA) it per-
tains to e.g., safety or energy consumption. When a System-
LevelQR calculates its own degree of satisfaction, it can then
optionally gather the satisfaction of each TaskLevelQR of
the same QA active below it in the BT. For example, each task
(navigation, mapping, detection) could have its own QR with
the QA ‘power’, and all their metrics can then be combined
to determine whether how many Watts per seconds are being
consumed.

In order to calculate a metric, a QRDecorator requires
information from the robot to be present in the Blackboard.
We implement this as illustrated in Fig. 3, the System-
Reflection ROS2 node subscribes to and consolidates
information streams from the robot e.g., LIDAR sensor data,
diagnostics. It then places this information into the Black-
board, allowing a QRDecorator can simply access it
through an input port.
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C. Architecture-based Self-adaptation with Behavior Trees
and ROS2

To address RQ2, which concerns integrating architecture-
based self-adaptation, we propose two contributions: an Ar-
chitectural Adaptation Layer and Adaptation Decorators.

1) Architectural Adaptation Layer: AAL is a ROS2 package
we created in our effort to standardize the Execution phase of
MAPE-K for ROS2-based systems. Note that it is possible to
use AAL without the rest of ReBeT; we refer the reader to the
repository5 that hosts several demos demonstrating as much.

In our previous work [3], we identified four types of
architectural adaptations present in the state of the art of
architecture-based self-adaptation in robotics:

1) Reparameterization of component(s)
2) Addition and/or removal of component(s)
3) Change in connection(s) between component(s)
4) Component(s) redeployment
We implement the first three in AAL through two ROS2

services AdaptArchitecture and AdaptArchitec-
tureExternal. We relegate the fourth to future work. We
now briefly cover the design and implementation of AAL as a
whole, and then each of the three architectural adaptations.

a) Overview: Fig. 4 provides an overview of how AAL
operates. Within the figure, an example AdaptDecora-

5https://github.com/EGAlberts/AAL-ROS2

tor ‘AdjustMaxVelocity’ uses AAL’s AdaptationMan-
ager ROS2 node to change the maximum velocity param-
eter of the Navigation ROS2 node. In this particular
example, as highlighted in bold, it makes use of the Ar-
chitectureAdaptationInternal service provided by
the AdaptationManager, which then uses the SetPa-
rameter service (provided by all ROS2 nodes) to modify
the maximum velocity. AAL also offers the possibility for
AdaptDecorators to use the ArchitectureAdapta-
tionExternal service to make use of external adaptation
strategies as we detail in Sec. III-C2. For changes in con-
nection between components the SetParameter service is
also used. As for the ChangeState service, this is a ROS2
service provided by every ROS2 lifecycle node. This allows
switching a lifecycle node between its seven states, including
shutting down and activating the node, which are analogous
to their removal and addition, respectively.

b) Reparameterization of component(s): As mentioned,
ROS2 nodes are reparameterized through the SetParam-
eter service they provide. On the side of the node, this
poses the small requirement which is that the execution
logic of the node is actively updating the values of its local
variables to match those of the parameters. For example, each
time the navigation node checks if a velocity is below the
maximum, it should compare this to an up to date maximum
velocity variable instead of its initial value. This update can
be manually encoded, or done through an event handler.

c) Addition and/or removal of component(s): As stated,
the addition and or removal of components requires the
adapted component to be a ROS2 lifecycle node. Turning
a regular ROS2 node into a lifecycle node is as simple as
changing one line in the import statement. However, typically
one wants to define behavior through event handlers upon
transition of states. For example, when the node transitions
from inactive to active, the sub-components such as pub-
lisher/subscribers or clients/services should also be activated,
rather than perpetually being active irrespective of the node’s
current state. However, for the purposes of adapting the node,
we place no requirements on the implementation of these event
handlers. The only caveat is that to be able to activate a node,
it must already be ‘launched’ (the process must be running).
This means that if one wants to have a system operate without
any user intervention, every node which will be added during
runtime should be launched at the beginning of execution.

d) Change in connection(s) between component(s):
Changing the connection between components in ROS2 con-
stitutes modifying the publishers and subscribers to ROS2
topics. For example, FROG typically uses its own camera
feed for detecting objects by having the object detection
node subscribe to the same topic its camera publishes its
feed to. If FROG’s camera were to fail, one could change
the connections such that the object detection node is now
subscribed to the camera feed of an alternative camera in the
room. Our implementation of the mechanism to accomplish
is inspired by de Leng and Heintz [23]. To allow a ROS2
node’s connections to be modified, we reserve parameters for

https://github.com/EGAlberts/AAL-ROS2


1 virtual bool evaluate_condition() override {
2 double curr_safety, curr_power;
3 getInput(SAFE_IN, curr_safety);
4 getInput(POW_IN, curr_power);
5 if(curr_safety < 0.09 || curr_power > 5.0) {
6 return decrease_velocity();
7 }
8 if(curr_safety > 0.15 || curr_power < 4.0) {
9 return increase_velocity();

10 }
11 return false;
12 }

Listing 1: Example of Internal Adaptation Plan

that purpose which correspond to the topics the node either
subscribes or publishes to. Then, the node implements an event
handler contingent on the change in value of that parameter.
Within the event handler, the existing subscriber/publisher is
destroyed and replaced with one corresponding to the new
topic (indicated by the parameter’s new value), but the state
of the node (e.g., a running average of all messages received
so far) is kept intact. An alternative implementation such as
removing/adding the node with a differing initial topic would
instead destroy the existing state.

2) Adaptation Decorators: AdaptDecorators are used
to specify the adaptations of the subset of software architecture
supporting performing tasks at runtime. When integrated with
ROS2, the leaf nodes of BTs are clients to ROS2 services,
which then actuate behavior in the robot. These services have
a surrounding infrastructure to support the functionality they
provide. For example, Nav2, a navigation library for ROS2,
provides a ‘NavigateToPose’ server which is connected to
myriad other ROS2 nodes which eventually actuate the motors
driving the robot’s wheels. Each of these nodes provides
an opportunity for runtime architectural adaptation pertinent
to the task of navigation, as we exploit in Section IV to
adjust the maximum velocity of a robot. The placement
of an AdaptDecorator in the BT is a hook into that
architectural adaptation, a platform from which self-adaptation
can be planned and executed. Every AdaptDecorator
requires the specification of an adaptation_location
which provides the name(s) of the ROS2 node(s) that will
be adapted. When the adaptation reparameterizes, we require
the additional specification of an adaptation_subject
to identify the parameter(s). Lastly, when using an external
adaptation strategy, two more details need to be specified, the
name of the adaptation strategy, and the adaptation options that
strategy should choose from. For example, the strategy could
be ‘ϵ-greedy’ [24] and the options {0.1,0.5,1.0} representing
velocities in m/s. All these details are specified through input
ports into the AdaptDecorator BT node, entailing that
their values can also be modified by BT logic during execution
(see Goal Management in Section III-A).

Each AdaptDecorator encapsulates ROS2 clients to the
two architectural adaptation services provided by AAL, the
internal and the external one. The internal service requires
adaptation plans be implemented by overriding the evalu-
ate_condition method which guards the use of the AAL

service, i.e., it is invoked when the function returns true. In
Listing 1 we give an example of such a strategy for adapting
the velocity of the robot at runtime. In contrast, the external
service requires a utility function to be provided. This function
assigns a utility value to the adaptation chosen by the external
strategy within AAL.

To aid the definition of both internal and external adaptation
strategies we provide four predefined conditions based on the
state of the BT node decorated by the AdaptDecorator.
These can be combined with overridden conditions through in-
heritance. The first of the four AdaptOnConditionStart
calls evaluate_condition should it be the first time
its child node is ticked (see Section II-A2 for a reminder
on this mechanism). The remaining three evaluate their con-
dition on return of the state of the child node after being
ticked by the decorator. That is, AdaptOnConditionRun-
ning, AdaptOnConditionSuccess and AdaptOnCon-
ditionFailure request an adaptation if the child indicates
a state of Running, Success, or Failure, respectively. For
the earlier example of modifying the maximum velocity, the
AdaptDecorator would be a subclass of AdaptOnCon-
ditionRunning so that it modulates the velocity while the
robot moves rather than before or afterwards.

IV. EVALUATION

In this section we evaluate the two research questions
previously stated in Section I separately. Our first evalua-
tion is a showcase encompassing our first contribution of
QRDecorators. The second consists of a set of experiments
performed with FROG. In each evaluation, we evaluate the
effect of self-adaptation on the driver of adaptation, which
in both cases is quality-driven and therefore we measure the
effect on fulfilling QRs. All the material to reproduce the
experiments and the results can be found in the replication
package6.

A. Quality-driven Task-based Self-adaptation

In this section we evaluate RQ1, ‘How can we integrate the
consideration of quality requirements into existing practices
of robotics software?’. As we do this in the absence of
RQ2 which considers architecture-based self-adaptation, we
apply QRDecorators to task-based self-adaptation. This
demonstrates their functionality independent of the basis of
adaptation, given that QRDecorators will also be used in
the evaluation of RQ2 to follow. In particular, we hypothesize:
The presence of QRDecorators along with task-based
adaptation in FROG will lead to QRs being continually
satisfied throughout operation. This hypothesis, should it
be proven true, would demonstrate integration of explicit QR
consideration in a meaningful scenario.

We report on a small experiment in which QRDecorators
determine the task plan of FROG as it is mapping a room. As
it maps the room, it visits the frontiers of its currently known
area in attempt to efficiently map the space i.e., performs

6https://github.com/EGAlberts/ACSOS-2024-ReBeT-FROG-rep-pkg
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Sec. IV.A. SLAM and Charge

Charge

Switch

FindFrontier

Sequence

MinBatterySys

MinBatteryNav

VisitFrontier

DetectPowerEfficiently

DetectObjectsEfficiently

AdjustDetectionAttempts

DetectObject

Root

Sequence

MoveSafely

MoveQuickly

MovePowerEfficiently

VisitObstacle

AdjustMaxVelocity

Sec. IV.B. Detect Objects

Parallel

Control

Action

LegendAdaptDecorator

QRDecorator Decorator

FromExploreToDetect

Repeat

Fig. 5: Complete View of the Behavior Tree Specified for the
Two Evaluations

frontier exploration. However, once frontier exploration is
complete, the robot must complete a time-sensitive task which
may or may not last longer than the remaining charge. We
express this constraint through the following QR and its sub-
requirement:

QR A1 MinBatterySystem: The robot must keep its battery
percentage above 90% during operation.
QR A1.1 MinBatteryNavigation: The above requirement, during
navigation.

The QR MinBatterySystem is a system-level QR with
a corresponding task-level sub-requirement MinBattery-
Navigation. As explained in Section III-B this entails that
during operation MinBatterySystem collects the metric
of MinBatteryNavigation. In this case, that metric is
the power consumed by the robot’s movement. MinBat-
terySystem combines this with system-level power con-
sumption by the LIDAR sensor and idle consumption. The
power consumption values used are based on work by Jaiem
et al. [25] with a similar robot.

The BT corresponding to this small mission can be found on
the left side of Fig. 5. As can be seen, each QR is represented
alongside the action nodes which command the robot to
charge or perform frontier exploration. To maintain the QR,
we implement a straightforward task plan adaptation, which
commands the robot to charge when MinBatterySystem
is in violation. We realize this in the BT through the Switch
control node which acts on the current status outputted by
MinBatterySystem and switches between frontier explo-
ration and charging.

In Fig. 6 we plot the satisfaction status of MinBat-
terySystem over time, alongside the current task the robot
is performing during a single run. As the room is static, the
execution is deterministic meaning one run is representative
of the mechanism. As can be seen, each time MinBat-
terySystem is not satisfied the current action of the robot
changes to charging, until frontier exploration is completed
(which in this case, saw three frontiers visited). This confirms
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Fig. 6: Task-based Adaptations to Satisfy a Quality Require-
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our hypothesis and shows that QRDecorators can facilitate
QRs being satisfied through integration into a regular BT.

B. Quality-driven Architecture-based Self-adaptation

We restate our RQ2 from Section I which is as follows:
‘How can we integrate architecture-based self-adaptation into
existing practices of robotics software?’. Particularly, in an-
swering this RQ we hypothesize: The utility of FROG with
architecture-based adaptation through ReBeT is higher
than without self-adaptation. This hypothesis, should it be
proven true, would indicate that our designed approach when
integrated is effective in its purpose of architecture-based
adaptation.

FROG, having completed mapping during in the previous
evaluation (Section IV-A), is now tasked with using its onboard
camera to detect a target object (in our case a fire hydrant)
among a set of 4. Additionally, an external camera facing a
fixed angle, can also potentially be used for detection. The
BT which represents the mission can be seen in the right
half of Fig. 5. When transitioning from mapping to detecting,
FromExploreToDetect removes the nodes exclusive to
mapping and adds those exclusive to detection. Specifically,
the frontier exploration service is removed and the object
detection service is added. Further, as can be seen, detecting
consists of two subtasks, VisitObstacle and Detec-
tObject, each with their own set of QRs in effect and
AdaptDecorators to try and satisfy the set. Three QRs
are imposed on VisitObstacle:

QR B1-1 MoveSafely: Try to keep a velocity of below 0.18m/s while
an object is within the first 10% of the range of the LIDAR.
QR B1-2 MoveQuickly: Navigate as close to the maximum velocity
of 0.26m/s as possible at all times.
QR B1-3 MovePowerEfficiently: While navigating, conserve as
much power as possible.

Clearly, these QRs are partially in conflict with one another
e.g., B1-2 requires maximum velocity which uses the most
power, in contrast with B1-3 which requires conserving power.
Therefore we use self-adaptation to dynamically satisfy these
three QRs in accordance with the current operating state. Par-
ticularly, we implement both an internal adaptation plan and
an external adaptation strategy to change FROG’s maximum
velocity. The internal plan was previously shown in Listing



1 and decreases the maximum velocity when B1-1 and B1-3
are in violation, while it increases the velocity to satisfy B1-2
if both B1-1 and B1-3 are satisfied. The external adaptation
strategy makes use of the UCB multi-armed bandit algorithm
[24] which operates by trying to maximize the utility in
response to adaptations. The utility represents the simultaneous
satisfaction of B1-1 through B1-3, the exact calculation of
which we explain later in the section. Two QRs are imposed
on DetectObject:

QR B1-4 DetectPowerEfficiently: Do not have FROG con-
sume more than 7113 Watts by detecting objects.
QR B1-5 DetectEffectively: Perform as many detections of the
target object as possible.

The figure of 7113 Watts in B1-4 is a calculation based on
the measured power consumed by a singular object detection
attempt. We multiply this by the number of obstacles mapped,
and parameters which specify how many pictures should be
taken per obstacle. The exact calculation can be found in
the code specific to FROG’s QRs. The two QRs are in
conflict as each attempt at a successful detections consumes
power. Additionally, during the evaluation we introduce noise
into the camera feed of the robot by changing the lighting
conditions. In poor lighting conditions it is difficult to success-
fully detect an object. We implement an internal adaptation
plan in AdjustDetectionAttempts which depending
on the lighting changes a parameter controlling the number
of attempts per execution of DetectObject. Additionally,
when the power budget imposed by B1-4 is depleted, we adapt
to change the connection pattern of the ROS2 nodes. Instead
of using the camera feed from the camera onboard FROG,
the adaptation logic changes the feed to that of the external
camera. While the external camera does not consume power on
the robot, any obstruction makes the target object impossible
to detect. For the sake of demonstration, we ensure the external
camera’s view is unobstructed.

We define the utility of QRs imposed on VisitObstacle
as:

Uvis = I{isSatisfied(MoveSafely)} v

vmax

1

Wmov

MoveSafely is satisfied when dlaser
min > 0.10∨(dlaser

min < 0.10∧
vmax < 0.18) is true, where v represents the velocity of the
robot, Wmov the Watts consumed by the robot moving and
dlaser the distances of objects around the robot provided by
the LIDAR’s laser scan.

We define the utility of QRs imposed on DetectObject
as:
Udet = I{isSatisfied(DetectPowerEfficiently)}psucc

ptotal

DetectPowerEfficiently is satisfied when W det >
7113 where W det is the Watts expended using the object
detection service and p represents the pictures used to detect.

From both utility calculation a prioritization in the QRs
is clear. There should be no effort in optimizing for QRs
B1-2, B-3, and B1-5 if DetectPowerEfficiently or
MoveSafely are being violated. Meanwhile, a tradeoff be-
tween the QRs within each task exists between while these

System psucc/ptotal v/vmax 1/Wmov Uvis Udet

mean std mean std mean std mean std mean std

Baseline 0.09 0.03 0.03 0.004 0.78 0.06 0.001 0.0004 0.09 0.03
ReBeT-Internal 1.27 0.10 0.02 0.003 0.49 0.03 0.004 0.0005 1.20 0.11
ReBeT-External 1.33 0.14 0.03 0.003 0.56 0.07 0.005 0.0013 1.27 0.13

TABLE I: FROG Results. Detection Picture Ratio (psucc/ptotal); Velocity Ratio (v/vmax);
Inverted Watts Moving (1/Wmov); VisitObs Utility (Uvis); DetectObj Utility (Udet);

two are satisfied.
Each run of the experiment lasts 300 seconds and sees

FROG continuously visit each obstacle in the hopes detecting
the target object. Table I shows the mean and standard devia-
tion of the utility of each task and their components across
25 runs of the three configurations of FROG we consider
(internal, external, baseline). As can be seen, for both utility
values ReBeT-Internal and ReBeT-External achieve higher
values by a margin exceeding the variance. Noticeable is that
for 1/Wmov, the baseline achieves higher values. However, de-
spite this technically satisfying MovePowerEfficiently
to a greater degree, this is not translated into Uvis due to
MoveSafely being violated.

To compare the Uvis and Udet values of the internal adap-
tation plan and external strategy against the baseline further
we perform a Mann-Whitney U rank test with significance
level 0.05 to see whether in each case the utilities are greater
than that of the baseline. For the case of the ReBeT-Internal
we find 7e−10 for both Uvis and Udet which indicates that it
indeed has a significantly greater utility than the baseline. For
the case of the ReBeT-External, we find 6.5e−9 and 7e−10 for
Uvis and Udet respectively, which indicates that it is also has a
significantly greater utility than the baseline. We can therefore
conclude that in both cases our hypothesis is confirmed.

V. DISCUSSION AND FUTURE WORK

A. Threats to Validity

Construct validity: While our RQs mention integration, we
do not quantify the integration effort of ReBeT in our evalua-
tion, posing a threat to construct validity. Due to our familiarity
with ReBeT as its authors, we abstained from quantifying our
own effort in integration as this would introduce unavoidable
bias. To counter this threat, our evaluation is based on utility,
which is commonplace in self-adaptation research. As future
work, we would like to evaluate the integration of ReBeT
more aptly e.g., through a case study. Internal validity: In
our evaluation we assume the changes in utility are caused
by self-adaptation. We verify this with the use of a baseline
without it. This poses a threat to internal validity, as such a
baseline is not a realistic implementation of a system without
self-adaptation. Rather, a real system may have other measures
to satisfy quality requirements. We counter this as our aim
concerns the integration of QRs and self-adaptation rather than
the utility of our adaptation mechanisms. External validity:
We have only applied ReBeT to a singular system. Therefore,
a threat to validity is that our conclusions may not hold across
applications. While we partially counter this by ensuring a lack
of dependencies on FROG in our design and implementation,
we recognize future work is necessary in broadening both the
range and complexity of systems we evaluate ReBeT on.



B. Added Value of ReBeT Abstractions

While our evaluation has revolved around the utility in
satisfying quality requirements, our approach also eases the de-
velopment of self-adaptive robotics applications. Our approach
allows for the decomposition of self-adaptation into its essen-
tial elements (when and what to adapt) as manifested through
QRDecorators and AdaptDecorator, respectively. We
believe this to be beneficial to developers of self-adaptive
robotics applications. QRDecorators and AdaptDecora-
tors promote separation of concerns and maintainability as
QR satisfaction calculations and adaptation plans can evolve
independently of tasks. Their introduction as BT nodes affords
them the BT’s inherent hierarchy, making it easy to specify the
tasks to they apply to. Finally, the introduction of new ROS2
nodes for monitoring (SystemReflection) and executing
(AdaptationManager) centralizes and homogenizes their
respective processes. Without them, each task would require
ad-hoc realizations for each of the two.

C. Ascribing Architecture-based Self-Adaptation to Existing
ROS2 systems

Our work facilitates three distinct types of architectural
adaptations through AAL. However, only reparameterization
is supported by default by all ROS2 nodes. Addition/removal
of nodes requires that the ROS2 node is a lifecycle node and
change in connection the implementation of an event handler.
This makes it more difficult to use existing ROS2 packages.
For example, the library we use for SLAM [26] does not
use lifecycle nodes. Therefore, a secondary set of mechanisms
constrained to the functionality applicable to all ROS2 nodes
should be made in future work. A potential solution could be
extending ROS2’s launch system which is used for starting
groups of ROS2 nodes. For example, we could introduce new
launch ‘actions’ which cover architectural adaptations. As the
launch files manage nodes externally, this would remove the
need for any changes to the nodes themselves.

VI. CONCLUSION

In this paper, we describe ReBeT, Re-configuration with
Behavior Trees, a framework for building self-adaptive
robotics applications through integration into behavior trees.
ReBeT strives to treat QRs as first-class citizens when creating
robotic mission plans and to make modification of the software
architecture of a robotic system accessible at the task plan
level. To do this, we extended the BT formalism with two new
types of nodes, one for modeling QRs and one for modeling
architecture-based adaptations. Our approach comes with a
comprehensive runtime adaptation scheme that directly works
with the provided variability points and QRs. We implemented
ReBeT on top of a state-of-the-art BT library and ROS2, the
de facto standard in robotics. Overall, we demonstrate that
ReBeT is useful for a range of different adaptation scenarios
while leveraging three distinct types of architectural adaptation
in robotics applications. We believe it has the potential to be
easily adopted and extended to accommodate more forms of
architectural adaptation and QRs.
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